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Abstract 

The Covid-19 pandemic poses a serious global health risk as an infectious disease transmitted 

from human to human. Starting In the early months of 2021, vaccination drives were launched 

to trigger collective defences through population immunity and lower rates of infections. This 

study examined a SEIQRD model adding vaccination to analyse the spread of COVID-19.  Two 

equilibrium states exist: non-endemic and endemic. Local stability near the equilibria was 

determined using Routh-Hurwitz criteria. Global stability was assessed through Lyapunov 

analysis of overall disease dynamics. Stability relies on the basic reproduction number (ℜ0) 

from Next Generation Matrix calculations. Stability analysis showed the system asymptotically 

stable with a bifurcation at ℜ0 = 1. Numerical solutions via fifth-order Runge-Kutta 

integration simulated in MATLAB found ℜ0 = 0.0004032, indicating local and global 

asymptotic stability. The study findings indicate that infections inevitably diminish over the long 

run. Sensitivity analysis identified four critically influential factors: the pace of introducing 

susceptible into the population, the likelihood of contracting the virus, the speed of developing 

symptoms after exposure, and the natural rate of mortality. Small variations in any of these 

four parameters can significantly impact projected disease dynamics. Close examination of 

their effects provides guidance on intervention strategies likely to shape the outbreak's 

trajectory. Finally, a forward bifurcation driven by the value of ℜ0 was detected. 
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Introduction 

In early 2020, the international community was alarmed by reports of unknown, severe 

Pneumonia originating in Wuhan, China. Chinese authorities first notified the World Health 

Organization (WHO) of 44 such cases among residents on December 31st, 2019 (Levani et al., 

2021; Mukherjee et al., 2023; Peter et al., 2021). Coronaviruses comprise a significant family 

of viruses capable of infecting both humans and other animals. When transmitted to people, 

they can manifest as respiratory illnesses ranging from mild conditions like the common cold 

to more serious diseases such as Middle East Respiratory Syndrome (MERS) and Severe Acute 

Respiratory Syndrome (SARS) (Khan et al., 2021; Sherif et al., 2023; Legesse et al., 2023). 

Thus, this particular illness was designated Coronavirus Disease-2019 (COVID-19) (Nasution 

et al., 2021; Han et al., 2020; Wu et al., 2020). 

The lungs represent the organs most prominently impacted by COVID-19, as the virus 

preferentially engages host cells via the ACE2 receptor protein abundantly situated in type II 

alveolar cells within the lungs (Letko et al., 2020; Sinaga et al., 2021). Airborne dissemination 

allows the coronavirus to persist suspended for up to three hours, and surfaces provide alternate 

routes for indirect transmission over prolonged durations. Diagnostic categorization of COVID-

19 involves suspected, probable and confirmed case classifications (Fatima et al., 2020; Yang 

& Wang, 2020; Schecter, 2021). Mass vaccination emerged as a core strategy adopted by 

governments to ultimately overcome the pandemic (Kolawole et al., 2023; Sahu & Singh, 2023; 

Savina et al., 2022) resembling earlier initiatives that halted plagues like polio and smallpox 

before definitive treatments emerged. 

Mathematical modelling constitutes a principal analytical approach applied to epidemic 

preparedness, including addressing the COVID-19 crisis (Shah & Mittal, 2021; Hamed, 2022; 

Shah & Chaudhary, 2023). Such modelling facilitates comprehending, simplifying and solving 

real-world problems through numerical methods serving as an alternative to closed-form 

analytical solutions obtainable via standard algebraic formulas (Hossain, 2017; Owolabi et al., 

2019; Parsamanesh et al., 2019; Annas et al., 2020; Kamrujjaman et al., 2022). Prior research 

by Chapra and Canale (2015) found the fifth-order Runge-Kutta technique exhibited less error 

than lower-order versions, confirming its enhanced accuracy. 

This study analysed the framework proposed by Mamo (2020), extending it by 

incorporating vaccination into susceptible subgroups while excluding the "H" or home isolation 

category. The resultant SEIQRD model partitions the population into six classes: susceptible 
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(S), latently exposed (E), symptomatic infections (I), isolated/quarantined cases (Q), 

recovered/immune (R), and deaths (D). 

 

Construction Of Model 

This research relies upon several key assumptions. It considers the overall population 

sufficiently large and open, allowing for natural increases and decreases through birth and 

death. The baseline mortality rate (𝜇) is assumed uniform across subpopulations. Initial 

conditions and parameter values must be non-negative numbers. Successfully vaccinated 

susceptible individuals transition to the recovered class. 

 

Figure 1: Schematic of the spread of COVID-19 

 

 

 

 

 

 

 

 

 

Susceptible (S) individuals represent the currently healthy but vulnerable segment. 𝑆 

numbers rise through new recruitment at rate 𝜆 but fall as contacts with infecteds (I) expose 

some to the virus at rate 𝛽𝐼. Vaccination (𝑣) and natural death (𝜇) also decrement S. The 

exposed or latent group (𝐸) comprises those exposed but not yet symptomatic, during 

incubation which averages 14 days. 𝐸 rises from new exposures at rate 𝛽𝐼 then falls as some 

develop symptoms at rate α or isolate prematurely at rate θ. Natural death also decreases 𝐸. 

Infected (𝐼) covers those symptomatic. 𝐼 increases from the incubating group at rate α, then 

decreases as some isolate at rate κ or recover/die at rate 𝛾, in addition to natural mortality. 

Quarantined (𝑄) captures isolated clinical cases. 𝑄 receives input from incubating (𝜃) and 

symptomatic (𝜅) individuals. Output flows to recovery (𝛾𝜀2) or death (𝛾(1 − 𝜀2)), along with 

the background mortality rate. Recovered/immune individuals (R) increase through vaccination 

(𝑣), recovery from symptoms (𝛾𝜀1), or post-isolation (𝛾𝜀2). Only natural death depletes 𝑅. 
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Finally, deaths (𝐷) accrue from non-recovery among infected (𝛾(1 − 𝜀1)) and quarantines 

(𝛾(1 − 𝜀2)), again experiencing the baseline mortality rate. 

Figure 1 schematizes these compartmental flows among the SEIQRD subclasses. The 

paper models this process using numerical integration via the Runge-Kutta method. Thus 

obtained a mathematical model of the spread of Covid-19 which consists of six differential 

equations as follows. 

 

{
 
 
 
 

 
 
 
 

𝑑𝑆

𝑑𝑡
= 𝜆 − 𝛽𝑆𝐼 − (𝜈 + 𝜇)𝑆

𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 − (𝛼 + 𝜃 + 𝜇)𝐸

𝑑𝐼

𝑑𝑡
= 𝛼𝐸 − (𝛾 + 𝜅 + 𝜇)𝐼

𝑑𝑄

𝑑𝑡
= 𝜃𝐸 + 𝜅𝐼 − (𝛾 + 𝜇)𝑄

𝑑𝑅

𝑑𝑡
= 𝜀1𝛾𝐼 + 𝜀2𝛾𝑄 + 𝜈𝑆 − 𝜇𝑅

 
𝑑𝐷

𝑑𝑡
= (1 − 𝜀1)𝛾𝐼 + (1 − 𝜀2)𝛾𝑄 − 𝜇𝐷

          (1) 

 

Basic Reproduction Number 

The basic reproduction number is a parameter used to find out how the rate of spread of 

Covid-19 virus infection in the population is. To obtain the value of ℜ0, the author will use the 

next generation matrix (NGM) method. Then by using Maple's tools it is obtained: 

ℜ0 =
𝛼𝛽𝜆

(𝛼 + 𝜃 + 𝜇)(𝜈 + 𝜇)(𝛾 + 𝜅 + 𝜇)
 

 

Equilibrium Point 

The equilibrium point is a state that explains the change in the number of individuals with 

time, so the change in the number of individuals with time is zero. Therefore, in the model 

system of equations (1) it can be written: 

𝜆 − 𝛽𝑆𝐼 − (𝜈 + 𝜇)𝑆 = 0          (2) 

𝛽𝑆𝐼 − (𝛼 + 𝜃 + 𝜇)𝐸 = 0         (3) 

𝛼𝐸 − (𝛾 + 𝜅 + 𝜇)𝐼 = 0         (4) 

𝜃𝐸 + 𝜅𝐼 − (𝛾 + 𝜇)𝑄 = 0         (5) 

The non-endemic equilibrium point is a situation when there is no spread of the Covid-

19 virus, so that no more individuals are infected by the Covid-19 virus. Therefore, the 

subpopulation in the model consisting of individuals indicated to be infected or confirmed 
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positive for the Covid-19 virus is zero (E = I = Q = 0). Then substitute E = I = Q = 0 in 

equation (2) - (5) to get: 

𝔼0 = (𝑆0, 𝐸0, 𝐼0, 𝑄0) = (
𝜆

(𝜈 + 𝜇)
, 0,0,0) 

The endemic equilibrium point is a condition when the spread of Covid-19 occurs, so that 

individuals who are indicated to be infected or confirmed positive can transmit the infection to 

other individuals. In this case it means that E ≠ I ≠ Q ≠ 0 as well as R and D are ignored 

according to the assumption given that individuals recovering from Covid-19 (subpopulation 

R) will no longer be sick. then obtained the endemic equilibrium point 𝔼∗ = (𝑆∗, 𝐸∗ , 𝐼∗, 𝑄∗) 

with their respective values as follows: 

𝑆∗ =
𝜆

𝛽𝐼∗ + (𝜈 + 𝜇)
 

 𝐸∗ =
(𝛾 + 𝜅 + 𝜇)𝐼∗

𝛼
 

 𝐼∗ =
𝛼𝛽𝜆 − (𝛼 + 𝜃 + 𝜇)(𝛾 + 𝜅 + 𝜇)(𝜇 + 𝜈)

𝛽(𝛼 + 𝜃 + 𝜇)(𝛾 + 𝜅 + 𝜇)
=
(ℜ0 − 1)(𝜇 + 𝜈)

𝛽
 

𝑄∗ =
(𝜃𝛾 + 𝜃𝜅 + 𝜃𝜇)𝐼∗ + 𝛼𝜅

𝛼(𝛾 + 𝜇)
 

 

Stability Analysis of the Equilibrium Point 

Stability analysis can be used to determine the behaviour around the equilibrium point. 

Stability analysis is carried out at the non-endemic equilibrium point and the endemic 

equilibrium point which will then be proven by the following theorems: 

Theorem 1. If ℜ0 < 1, the non-endemic equilibrium 𝔼0 will be locally asymptotically 

stable. 

Proof: From the linearization process to determine the Jacobi matrix around 𝔼0, the following 

matrix is obtained: 

𝐽(𝔼0) =

[
 
 
 
 
 −𝜈 − 𝜇 0 −

𝛽𝜆

𝜈 + 𝜇
                     0

0 −𝛼 − 𝜃 − 𝜇
𝛽𝜆

𝜈 + 𝜇
                       0

0
0

𝛼
𝜃

−𝛾 − 𝜅 − 𝜇              0
𝜅                   −𝛾 − 𝜇 ]

 
 
 
 
 

 

 

With the Sarrus method and the Maple computing tools, the characteristic equation of 

Jacobian 𝐽(𝔼0) is obtained as follows: 
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(𝑥 + 𝜈 + 𝜇)(𝑥 + 𝛾 + 𝜇)(𝑥2 + (𝛾 + 𝜅 + 𝛼 + 𝜃 + 2𝜇)𝑥 −
𝛼𝛽𝛾

𝜇+𝜈
+ (𝛼 + 𝜃 + 𝜇)(𝜅 + 𝛾 + 𝜇)) =

0   (6) 

From equation (6) we obtain eigenvalue are 𝑥1 = −(𝛾 + 𝜇), 𝑥2 = −(𝜈 + 𝜇)  and the 

polynomial equation is (𝑥 + 𝜈 + 𝜇)(𝑥 + 𝛾 + 𝜇)(𝐴0𝑥
2 + 𝐴1𝑥 + 𝐴2), where: 

𝐴0 = 1 

𝐴1 = (𝛾 + 𝜅 + 𝛼 + 𝜃 + 2𝜇) 

𝐴2 = −
𝛼𝛽𝛾

𝜇+𝜈
+ (𝛼 + 𝜃 + 𝜇)(𝜅 + 𝛾 + 𝜇) = (1 − ℜ0)(𝛼 + 𝜃 + 𝜇)(𝜅 + 𝛾 + 𝜇)  

Based on Routh-Hurwitz criteria, 𝔼0 locally asymptotically stable if 𝐴1 > 0 and 𝐴1. 𝐴2 >

0, these conditions are met if ℜ0 < 1. ∎ 

Theorem 2. If  ℜ0 > 1, the endemic equilibrium 𝔼∗ will be locally asymptotically stable. 

Proof: From the linearization process to determine the Jacobian matrix around 𝔼∗, the following 

matrix is obtained: 

𝐽(𝔼∗)

=

[
 
 
 
 
 
 
−𝛼𝛽𝜆 + (𝛼 + 𝜃 + 𝜇)(𝛾 + 𝜅 + 𝜇)(𝜇 + 𝜈)

𝛽(𝛼 + 𝜃 + 𝜇)(𝛾 + 𝜅 + 𝜇)
− 𝜇 − 𝜈 0 −

(𝛼 + 𝜃 + 𝜇)(𝛾 + 𝜅 + 𝜇)

𝛼
         0

𝛼𝛽𝜆 − (𝛼 + 𝜃 + 𝜇)(𝛾 + 𝜅 + 𝜇)(𝜇 + 𝜈)

𝛽(𝛼 + 𝜃 + 𝜇)(𝛾 + 𝜅 + 𝜇)
−𝛼 − 𝜃 − 𝜇

(𝛼 + 𝜃 + 𝜇)(𝛾 + 𝜅 + 𝜇)

𝛼
           0

0
0

𝛼
𝜃

−𝛾 − 𝜅 − 𝜇                  0
              𝜅                  −𝛾 − 𝜇 ]

 
 
 
 
 
 

 

 

With the Sarrus method and the Maple computing tools, the characteristic equation of 

Jacobian 𝐽(𝔼∗) is obtained as follows: 

(𝑥 + 𝛾 + 𝜇)(𝑥3 + (
((𝛾+𝜅+𝜇)𝛼2+(𝜆𝛽+(𝛾+𝜅+𝜇)(𝛾+𝜅+2𝜃+3𝜇))𝛼+(𝜃+𝜇)(𝛾+𝜅+𝜇)(𝛾+𝜅+2𝜇+𝜃)

(𝛾+𝜅+𝜇)(𝜃+𝛼+𝜇)
)𝑥2 +

(
𝜆𝛽𝛼2+𝜆(𝛾+𝜅+2𝜇+𝜃)𝛽𝛼

(𝛾+𝜅+𝜇)(𝜃+𝛼+𝜇)
)𝑥 − (𝜆𝛽𝛼 − (𝜈 + 𝜇)(𝛼 + 𝜃 + 𝜇)(𝛾 + 𝜅 + 𝜇))) = 0   (7) 

 

From equation (7) we obtain eigenvalue are 𝑥1 = −(𝛾 + 𝜇) and the polynomial equation 

is (𝑥 + 𝛾 + 𝜇)(𝑎0𝑥
3 + 𝑎1𝑥

2 + 𝑎2𝑥 + 𝑎3), where: 

𝑎0 = 1 

𝑎1 =
((𝛾+𝜅+𝜇)𝛼2+(𝜆𝛽+(𝛾+𝜅+𝜇)(𝛾+𝜅+2𝜃+3𝜇))𝛼+(𝜃+𝜇)(𝛾+𝜅+𝜇)(𝛾+𝜅+2𝜇+𝜃)

(𝛾+𝜅+𝜇)(𝜃+𝛼+𝜇)
   

𝑎2 = (
𝜆𝛽𝛼2 + 𝜆(𝛾 + 𝜅 + 2𝜇 + 𝜃)𝛽𝛼

(𝛾 + 𝜅 + 𝜇)(𝜃 + 𝛼 + 𝜇)
) 

𝑎3 = (𝜆𝛽𝛼 − (𝜈 + 𝜇)(𝛼 + 𝜃 + 𝜇)(𝛾 + 𝜅 + 𝜇)) 
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𝑎3 = (ℜ0 − 1)(𝜈 + 𝜇)(𝛼 + 𝜃 + 𝜇)(𝛾 + 𝜅 + 𝜇) 

Based on Routh-Hurwitz criteria, 𝔼∗ locally asymptotically stable if 𝑎1 > 0, 𝑎2 > 0 and 

𝑎1. 𝑎2 > 𝑎3, these conditions are met if ℜ0 > 1. ∎ 

Theorem 3. The non-endemic equilibrium points 𝔼0 in the model will be globally 

asymptotically stable if ℜ0 < 1. 

Proof: We define the function 𝑉:𝑃 → ℝ with 𝑃 = {(𝑆, 𝐸, 𝐼, 𝑄, 𝑅,𝐷)|𝑆, 𝐸, 𝐼, 𝑄, 𝑅, 𝐷 ∈ ℝ} 

and the Lyapunov function for the reduced system of equations (1) that is: 

𝑉(𝑡) = (𝑆 − 𝑆0 − 𝑆0𝑙𝑛
𝑆

𝑆0
) + 𝑘1𝐸 + 𝑘2𝐼 + 𝑘3𝑄 

 

This Lyapunov function which was used by many authors before see (Saeed, 2017; Gaber 

et al., 2024). Function 𝑉 is a Lyapunov function because it fulfils the following conditions: The 

function 𝑉 consists of a logarithmic function, so it is clear that the function is a continuous 

function on P, and the first partial derivative is also a continuous function on P. 

The function V has a global minimum at 𝔼0 with respect to all points in P. 

For 𝑉(𝑆, 𝐸, 𝐼, 𝑄) ≠ 𝑉(𝑆0, 𝐸0, 𝐼0, 𝑄0) will be shown that 𝑉(𝑆, 𝐸, 𝐼, 𝑄) > 0. 

𝑉 = (𝑆 − 𝑆0 − 𝑆0𝑙𝑛
𝑆

𝑆0
) + 𝑘1𝐸 + 𝑘2𝐼 + 𝑘3𝑄 

= 𝑆0 (
𝑆

𝑆0
− 1 − 𝑙𝑛

𝑆

𝑆0
) + 𝑘1𝐸 + 𝑘2𝐼 + 𝑘3𝑄 

It can be seen that the function V will be positive if 𝑆0 (
𝑆

𝑆0
− 1 − 𝑙𝑛

𝑆

𝑆0
) > 0. 

Next, we will obtain the Hessian matrix in 𝑆0 and use it to show that 𝑆0 is the global 

minimum point: 

𝐻(𝑆0) = [
𝜕2𝑉

𝜕𝑆2
] = [

1

𝑆0
] 

Matrix 𝐻(𝑆0) positive definite because det (𝐻(𝑆0)) =
1

𝑆0
> 0. 

For 𝑉(𝑆, 𝐸, 𝐼, 𝑄) = 𝑉(𝑆0, 𝐸0, 𝐼0, 𝑄0) will be shown that 𝑉(𝑆, 𝐸, 𝐼, 𝑄) = 0. 

𝑉 = (𝑆 − 𝑆0 − 𝑆0𝑙𝑛
𝑆

𝑆0
) + 𝑘1𝐸 + 𝑘2𝐼 + 𝑘3𝑄 

= (
𝜆

(𝜈 + 𝜇)
−

𝜆

(𝜈 + 𝜇)
−

𝜆

(𝜈 + 𝜇)
𝑙𝑛1) + 0 + 0 + 0 

= 0 
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Then it is proved that 𝑉(𝑆, 𝐸, 𝐼, 𝑄) > 0 when 𝑉(𝑆, 𝐸, 𝐼, 𝑄) ≠ 𝑉(𝑆0, 𝐸0, 𝐼0, 𝑄0) with 

𝑉(𝑆, 𝐸, 𝐼, 𝑄) ∈ 𝑃, and 𝑉(𝑆, 𝐸, 𝐼, 𝑄) = 0 when 𝑉(𝑆, 𝐸, 𝐼, 𝑄) = 𝑉(𝑆0, 𝐸0, 𝐼0, 𝑄0), and 𝑆0 is the 

global minimum. 

The derivative of the function V(t) is 
𝑑𝑉(𝑡)

𝑑𝑡
 satisfies 

𝑑𝑉(𝑡)

𝑑𝑡
≤ 0 for all points in P. 

𝑑𝑉

𝑑𝑡
=
𝜕𝑉

𝜕𝑆

𝑑𝑆

𝑑𝑡
+
𝜕𝑉

𝜕𝐸

𝑑𝐸

𝑑𝑡
+
𝜕𝑉

𝜕𝐼

𝑑𝐼

𝑑𝑡
+
𝜕𝑉

𝜕𝑄

𝑑𝑄

𝑑𝑡
 

= (1 −
𝑆0

𝑆
)
𝑑𝑆

𝑑𝑡
+ 𝑘1

𝑑𝐸

𝑑𝑡
+ 𝑘2

𝑑𝐼

𝑑𝑡
+ 𝑘3

𝑑𝑄

𝑑𝑡
 

= (1 −
𝑆0

𝑆
) (𝜆 − 𝛽𝑆𝐼 − (𝜈 + 𝜇)𝑆) + 𝑘1(𝛽𝑆𝐼 − (𝛼 + 𝜃 + 𝜇)𝐸) + 𝑘2(𝛼𝐸 − (𝛾 + 𝜅 + 𝜇)𝐼) +

𝑘3(𝜃𝐸 + 𝜅𝐼 − (𝛾 + 𝜇)𝑄)  

= (−𝑘1(𝛼 + 𝜃 + 𝜇) + 𝑘2𝛼 + 𝑘3𝜃)𝐸 + (𝑘1𝛽 (
𝜆

(𝜈+𝜇)
) − 𝑘2(𝛾 + 𝜅 + 𝜇) + 𝑘3𝜅) 𝐼 − 𝑘3(𝛾 +

𝜇)𝑄  

= (−(𝛼 + 𝜃 + 𝜇) +
𝛼𝛽𝜆

(𝜈+𝜇)(𝛾+𝜅+𝜇)
)𝐸 + (

𝛽𝜆

(𝜈+𝜇)
−

𝛽𝜆

(𝜈+𝜇)
) 𝐼  

= (
𝛼𝛽𝜆

(𝜈+𝜇)(𝛾+𝜅+𝜇)
− (𝛼 + 𝜃 + 𝜇))𝐸  

= (ℜ0 − 1)(𝛼 + 𝜃 + 𝜇)𝐸  

 

When ℜ0 < 1, then value 
𝑑𝑉(𝑡)

𝑑𝑡
≤ 0. So, it can be concluded that the non-endemic 

equilibrium points 𝐸0 for the system of equations (1) is globally asymptotically stable. ∎ 

Theorem 4. The endemic equilibrium points 𝔼∗ in the model will be globally 

asymptotically stable if  ℜ0 > 1. 

Proof: We define the function 𝑊:𝑃 → ℝ with 𝑃 = {(𝑆, 𝐸, 𝐼, 𝑄, 𝑅, 𝐷)|𝑆, 𝐸, 𝐼, 𝑄, 𝑅,𝐷 ∈ ℝ} 

and the Lyapunov function for the reduced system of equations (1) that is: 

𝑊(𝑡) = (𝑆 − 𝑆∗ − 𝑆∗𝑙𝑛
𝑆

𝑆∗
) + (𝐸 − 𝐸∗ − 𝐸∗𝑙𝑛

𝐸

𝐸∗
) + (𝐼 − 𝐼∗ − 𝐼∗𝑙𝑛

𝐼

𝐼∗
) + (𝑄 − 𝑄∗ −

𝑄∗𝑙𝑛
𝑄

𝑄∗
)  

Function W is a Lyapunov function because it fulfils the following conditions: The 

function W consists of a logarithmic function, so it is clear that the function is a continuous 

function on P, and the first partial derivative is also a continuous function on P. 

The function W has a global minimum at 𝔼∗ with respect to all points in P. 

For 𝑊(𝑆, 𝐸, 𝐼, 𝑄) ≠ 𝑊(𝑆0, 𝐸0, 𝐼0, 𝑄0) will be shown that 𝑊(𝑆, 𝐸, 𝐼, 𝑄) > 0. 

𝑊 = (𝑆 − 𝑆∗ − 𝑆∗𝑙𝑛
𝑆

𝑆∗
) + (𝐸 − 𝐸∗ − 𝐸∗𝑙𝑛

𝐸

𝐸∗
) + (𝐼 − 𝐼∗ − 𝐼∗𝑙𝑛

𝐼

𝐼∗
) + (𝑄 − 𝑄∗ − 𝑄∗𝑙𝑛

𝑄

𝑄∗
)  
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= 𝑆∗ (
𝑆

𝑆∗
− 1 − 𝑆∗𝑙𝑛

𝑆

𝑆∗
) + 𝐸∗ (

𝐸

𝐸∗
− 1 − 𝐸∗𝑙𝑛

𝐸

𝐸∗
) + 𝐼∗ (

𝐼

𝐼∗
− 1 − 𝐼∗𝑙𝑛

𝐼

𝐼∗
) + 𝑄∗ (

𝑄

𝑄∗
− 1 −

𝑄∗𝑙𝑛
𝑄

𝑄∗
)  

It can be seen that the function W will be positive if  𝑆∗ (
𝑆

𝑆∗
− 1− 𝑙𝑛

𝑆

𝑆∗
) > 0, 𝐸∗ (

𝐸

𝐸∗
− 1 −

𝐸∗𝑙𝑛
𝐸

𝐸∗
) > 0, 𝐼∗ (

𝐼

𝐼∗
− 1 − 𝐼∗𝑙𝑛

𝐼

𝐼∗
) > 0 𝑎𝑛𝑑 𝑄∗ (

𝑄

𝑄∗
− 1 − 𝑄∗𝑙𝑛

𝑄

𝑄∗
) > 0. 

The next step is to show the equilibrium point (𝑆∗, 𝐸∗, 𝐼∗, 𝑄∗) is the global minimum point 

which is done by obtaining the Hessian matrix in (𝑆∗, 𝐸∗, 𝐼∗, 𝑄∗): 

𝐻(𝑆∗, 𝐸∗, 𝐼∗, 𝑄∗) =

[
 
 
 
 
 
 
 
 
 
𝜕2𝑊

𝜕𝑆2
𝜕2𝑊

𝜕𝑆𝜕𝐸

𝜕2𝑊

𝜕𝑆𝜕𝐼

𝜕2𝑊

𝜕𝑆𝜕𝑄

𝜕2𝑊

𝜕𝑆𝜕𝐸

𝜕2𝑊

𝜕𝐸2
𝜕2𝑊

𝜕𝐼𝜕𝐸

𝜕2𝑊

𝜕𝑄𝜕𝐸

𝜕2𝑊

𝜕𝑆𝜕𝐼
𝜕2𝑊

𝜕𝑆𝜕𝑄

𝜕2𝑊

𝜕𝐸𝜕𝐼
𝜕2𝑊

𝜕𝐸𝜕𝑄

𝜕2𝑊

𝜕𝐼2

𝜕2𝑊

𝜕𝐼𝜕𝑄

𝜕2𝑊

𝜕𝑄𝜕𝐼

𝜕2𝑊

𝜕𝑄2 ]
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
1
𝑆∗⁄ 0 0        0

0 1
𝐸∗⁄ 0        0

0
0

0
0

1
𝐼∗⁄

0
  

0
1
𝑄∗⁄ ]
 
 
 
 

 

Matrix 𝐻(𝑆∗, 𝐸∗, 𝐼∗, 𝑄∗) positive definite because det (𝐻(𝑆∗, 𝐸∗, 𝐼∗, 𝑄∗)) =
1

𝑆∗𝐸∗𝐼∗𝑄∗
> 0 

For 𝑊(𝑆, 𝐸, 𝐼, 𝑄) = 𝑊(𝑆∗, 𝐸∗ , 𝐼∗, 𝑄∗) will be shown that 𝑊(𝑆, 𝐸, 𝐼, 𝑄) = 0. 

𝑊 = (𝑆 − 𝑆∗ − 𝑆∗𝑙𝑛
𝑆

𝑆∗
) + (𝐸 − 𝐸∗ − 𝐸∗𝑙𝑛

𝐸

𝐸∗
) + (𝐼 − 𝐼∗ − 𝐼∗𝑙𝑛

𝐼

𝐼∗
) + (𝑄 − 𝑄∗ − 𝑄∗𝑙𝑛

𝑄

𝑄∗
)  

= (0 − 𝑆∗𝑙𝑛1) + (0 − 𝐸∗𝑙𝑛1) + (0 − 𝐼∗𝑙𝑛1) + (0 − 𝑄∗𝑙𝑛1)  

= 0 

Then it is proved that 𝑊(𝑆, 𝐸, 𝐼, 𝑄) > 0 when 𝑊(𝑆, 𝐸, 𝐼, 𝑄) ≠ 𝑊(𝑆∗, 𝐸∗, 𝐼∗, 𝑄∗) with 

𝑊(𝑆, 𝐸, 𝐼, 𝑄) ∈ 𝑃, dan 𝑊(𝑆, 𝐸, 𝐼, 𝑄) = 0 when 𝑊(𝑆, 𝐸, 𝐼, 𝑄) = 𝑊(𝑆∗, 𝐸∗, 𝐼∗, 𝑄∗), as well as 

(𝑆∗, 𝐸∗, 𝐼∗, 𝑄∗) is the global minimum. 

The derivative of the function W(t) is 
𝑑𝑊(𝑡)

𝑑𝑡
 satisfies 

𝑑𝑊(𝑡)

𝑑𝑡
≤ 0 for all points in P. 

𝑑𝑊

𝑑𝑡
=
𝜕𝑊

𝜕𝑆

𝑑𝑆

𝑑𝑡
+
𝜕𝑊

𝜕𝐸

𝑑𝐸

𝑑𝑡
+
𝜕𝑊

𝜕𝐼

𝑑𝐼

𝑑𝑡
+
𝜕𝑊

𝜕𝑄

𝑑𝑄

𝑑𝑡
 

= (1 −
𝑆∗

𝑆
)
𝑑𝑆

𝑑𝑡
+ (1 −

𝐸∗

𝐸
)
𝑑𝐸

𝑑𝑡
+ (1 −

𝐼∗

𝐼
)
𝑑𝐼

𝑑𝑡
+ (1 −

𝑄∗

𝑄
)
𝑑𝑄

𝑑𝑡
  

= (1 −
𝑆∗

𝑆
) (𝜆 − 𝛽𝑆𝐼 − (𝜈 + 𝜇)𝑆) + (1 −

𝐸∗

𝐸
) (𝛽𝑆𝐼 − (𝛼 + 𝜃 + 𝜇)𝐸) + (1 −

𝐼

𝐼∗
) (𝛼𝐸 − (𝛾 +

𝜅 + 𝜇)𝐼) + (1 −
𝑄∗

𝑄
) (𝜃𝐸 + 𝜅𝐼 − (𝛾 + 𝜇)𝑄)  

= (1 −
𝑆∗

𝑆
) (𝜆 − 𝛽𝑆𝐼 − 𝑐1𝑆) + (1 −

𝐸∗

𝐸
) (𝛽𝑆𝐼 − 𝑐2𝐸) + (1 −

𝐼∗

𝐼
) (𝛼𝐸 − 𝑐3𝐼) + (1 −

𝑄∗

𝑄
) (𝜃𝐸 + 𝜅𝐼 − 𝑐4𝑄)  
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= 𝛽𝑆∗𝐼∗ (2 −
𝑆∗

𝑆
) + 𝑐1𝑆

∗ (2 −
𝑆∗

𝑆
−

𝑆

𝑆∗
) + 𝛽𝑆∗𝐼 (1 −

𝐸∗

𝐸

𝑆

𝑆∗
) + 𝛼𝐸∗ (1 −

𝐼∗

𝐼

𝐸

𝐸∗
+

𝐸

𝐸∗
) + 𝜃𝐸∗ (1 −

𝑄∗

𝑄
+

𝐸

𝐸∗
−

𝐸

𝐸∗
𝑄∗

𝑄
) + 𝜅𝐼∗ (1 −

𝑄∗

𝑄
+

𝐼

𝐼∗
−

𝐼

𝐼∗
𝑄∗

𝑄
) + 𝑐4𝑄

∗ (1 −
𝑄

𝑄∗
) − 𝑐2𝐸 − 𝑐3𝐼  

= (2 −
𝑆∗

𝑆
−

𝑆

𝑆∗
) (

(ℜ0−1)(𝜈+𝜇)(𝛼+𝜃+𝜇)(𝛾+𝜅+𝜇)

𝛽(𝛼+𝜃+𝜇)(𝛾+𝜅+𝜇)
)𝛽𝑆∗ − 𝑐1 (

𝑆−𝑆∗

𝑆
)
2

+ (𝜃𝐸∗ + 𝜅𝐼∗) (3 −
2𝑄∗

𝑄
−

𝑄

𝑄∗
)  

According to the AM-GM Theorem  we get 
𝑆∗

𝑆
+

𝑆

𝑆∗
≥ 2 and 

2𝑄∗

𝑄
+

𝑄

𝑄∗
≥ 3 that shown 

(2 −
𝑆∗

𝑆
−

𝑆

𝑆∗
) and (3 −

2𝑄∗

𝑄
−

𝑄

𝑄∗
) is the negative value. If the value of (2 −

𝑆∗

𝑆
−

𝑆

𝑆∗
) and 

(3 −
2𝑄∗

𝑄
−

𝑄

𝑄∗
) is negative and the value of ℜ0 > 1, then the value of  

𝑑𝑊(𝑡)

𝑑𝑡
≤ 0. Derivative of 

function W(t) is 
𝑑𝑊(𝑡)

𝑑𝑡
 fullfill of  

𝑑𝑊(𝑡)

𝑑𝑡
≤ 0 for all points in P, it can be concluded that the 

endemic equilibrium points 𝐸∗ for the system of equations (1) is globally asymptotically stable.  

Based on the discussion above, some key points regarding disease equilibria can be 

summarized: 

 The disease-free equilibrium 𝐸0, always exists regardless of parameter values. 

 If the basic reproduction number, ℜ0, is less than 1, then only 𝐸0  exists and it is globally 

asymptotically stable, meaning no endemic persists long-term. 

 However, if ℜ0 exceeds 1, the endemic equilibrium, 𝐸∗, co-exists with 𝐸0  and becomes 

globally asymptotically stable instead, such that the disease can persist long-term. 

 As referenced in (Martcheva 2014) , this scenario typifies a forward bifurcation driven by 

the value of ℜ0 

 Since ℜ0 is directly proportional to the infection rate 𝛽, variations in 𝛽 can likewise induce 

the forward bifurcation. 

 

Computational simulations were performed using the parameter values in Table 1. while 

modulating 𝛽. The resultant bifurcation diagram plotted in Figure 5 demonstrates the forward 

bifurcation, with the bifurcation point occurring when ℜ0 equals 1, equivalent to 𝛽 

approximately 0.00165. 

 

Runge Kutta 5th Order Method 

By following the steps for solving the Runge-Kutta method of order 5 equation (1) can 

be discretized into the following equation: 

𝑆1 = 𝑆0 +
1

90
(7𝑘1,𝑠 + 32𝑘3,𝑠 + 12𝑘4,𝑠 + 32𝑘5,𝑠 + 7𝑘6,𝑠)ℎ  

𝐸1 = 𝐸0 +
1

90
(7𝑘1,𝐸 + 32𝑘3,𝐸 + 12𝑘4,𝐸 + 32𝑘5,𝐸 + 7𝑘6,𝐸)ℎ  
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𝐼1 = 𝐼0 +
1

90
(7𝑘1,𝐼 + 32𝑘3,𝐼 + 12𝑘4,𝐼 + 32𝑘5,𝐼 + 7𝑘6,𝐼)ℎ  

𝑄1 = 𝑄0 +
1

90
(7𝑘1,𝑄 + 32𝑘3,𝑄 + 12𝑘4,𝑄 + 32𝑘5,𝑄 + 7𝑘6,𝑄)ℎ  

𝑅1 = 𝑅0 +
1

90
(7𝑘1,𝑅 + 32𝑘3,𝑅 + 12𝑘4,𝑅 + 32𝑘5,𝑅 + 7𝑘6,𝑅)ℎ  

𝐷1 = 𝐷0 +
1

90
(7𝑘1,𝐷 + 32𝑘3,𝐷 + 12𝑘4,𝐷 + 32𝑘5,𝐷 + 7𝑘6,𝐷)ℎ  

Henceforth, the discretization results are used to complete numerical simulations with the 

help of the MATLAB software application. 

 

Numerical Simulation 

We verified our model and findings by using the Data of the Covid-19 spread in West 

Java Province from March 16, 2022 to April 16, 2022, obtained from 

https://pikobar.jabarprov.go.id/ and https://www.bps.go.id/, as well as data parameters obtained 

from calculations using the Least Square method with Maple tools and non-linear regression 

with MATLAB tools, so that the literature study is obtained in the following table. 

 

Table 1. Parameter Value 

Parameter Initial Value Unit Source 

𝜆 37.412 /Day [fitted] 

𝛽 0.66501 × 10−6 /Day [fitted] 

𝛼 0.2 /Day [fitted] 

𝜃 0.409 /Day [fitted] 

𝜅 0.796 /Day [fitted] 

𝛾 0.274 /Day [fitted] 

𝜀1 0.999 /Day [fitted] 

𝜀2 0.135 /Day [fitted] 

𝜇 0.37 × 10−4 /Day [fitted] 

𝜈 0.0189 /Day [fitted] 

Source: Prepared by the author (2024) 

 

The initial values for our study (obtained from 16th of March data) are the following: 

𝑆(0) =  16,006,309,𝐸(0) = 572,979, 𝐼(0) = 1,080,322, Q(0) =  989,911, 𝑎𝑛𝑑 𝐷(0) =

15466 

 

https://pikobar.jabarprov.go.id/
https://www.bps.go.id/
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The disease-free (non-endemic) equilibrium point is: 

𝔼0 = (𝑆0, 𝐸0, 𝐼0, 𝑄0) = (
𝜆

(𝜈 + 𝜇)
, 0,0,0) = (1975.603316;0; 0; 0) 

The calculation of the basic reproduction number (ℜ0) involves putting the parameter 

values from Table 1 into the following equation,  

ℜ0 =
𝛼𝛽𝜆

(𝛼 + 𝜃 + 𝜇)(𝜈 + 𝜇)(𝛾 + 𝜅 + 𝜇)
 

ℜ0 = 0.0004032  

Based on this simulation, the value of ℜ0 < 1, so that in a long time the spread of the 

disease will decrease and in the end no individual will be infected with the Covid-19 virus. 

Furthermore, using the calculation results obtained the eigenvalues of the Jacobian matrix 

at the non-endemic equilibrium point. By using Maple computational tools, the eigenvalues of 

the Jacobian matrix at the non-endemic equilibrium point are obtained as follows: 

𝑥1 = −0.018937 

𝑥2 = −0.274037 

𝑥3 = −1.070606274 

𝑥4 = −0.6084677263 

Since the real part of all the eigenvalues is negative, the non-endemic equilibrium point 

is locally asymptotically stable. Next, we will analyse the global stability at the non-endemic 

equilibrium point using the Lyapunov function as follows. 

𝑑𝑉(𝑡)

𝑑𝑡
= (ℜ0 − 1)(𝛼 + 𝜃 + 𝜇)𝐸  

𝑑𝑉(𝑡)

𝑑𝑡
= −0.6087914391 

𝑑𝑉(𝑡)

𝑑𝑡
< 0 for (𝑆, 𝐸, 𝐼, 𝑄, 𝑅,𝐷) ∈ 𝑃 

Because the Lyapunov function can be found at the non-endemic equilibrium point, it can 

be concluded that the non-endemic equilibrium point is globally asymptotically stable. 

 

Figure 2: Covid-19 Spread Simulation Graph 
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Figure 2 above shows the change in the number of SEIQ subpopulations over time in non-

endemic cases. In the initial conditions, the number of Susceptible/vulnerable subpopulations 

decreased due to contact between susceptible individuals and infected individuals, so that 

susceptible individuals became latent individuals. In the Exposed/latent subpopulation, there 

was an increase, but then it decreased due to the change of latent individuals into infected 

individuals. In the Infected subpopulation, the spread of the virus increased in the initial state, 

then decreased due to the quarantine/isolation rate in the infected subpopulation. In the 

Quarantine/quarantine subpopulation, there was an increase at the beginning, but then it 

decreased due to changes in quarantine individuals to recover or die individuals.  

 

Sensitivity Analysis 

Sensitivity analysis is calculated by finding the partial derivative of  ℜ0 with respect to 

the parameter (p). 

𝐶𝑝
ℜ0 =

𝜕ℜ0
𝜕𝑝

×
𝑝

ℜ0
 

With the help of the Maple computational tool, we obtain the parameter sensitivity index 

in ℜ0 is as shown following table. 

 

Table 2. Parameter Sensitivity Index 

Parameter Sensitivity Index 

𝜆 1 

𝛽 1 

𝛼 0.6716127262 

𝜇 -0.002049176856 

𝛾 -0.2560659118 

𝜃 -0.6716127262 

𝜅 -0.7438995101 

𝜈 -0.9980461530 

Source: Prepared by the author (2024) 

 

Based on the sensitivity index values provided in Table 2: 
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 The four parameters with the most significant impacts on COVID-19 spread, in descending 

order of effect, are: recruitment rate (𝜆), transmission rate from Susceptible to Infected (𝛽), 

incubation period transition rate (𝛼), and the natural mortality rate (𝜇). 

 𝜆, 𝛽, and 𝜇 each carry positive sensitivity indices. Therefore, increasing these parameter 

values serves to elevate the basic reproduction number R0, augmenting viral dissemination. 

 Conversely, 𝜇, 𝛾, 𝜃, 𝜅, and 𝜈 exhibit negative sensitivity indices. A rise in any of these 

parameters acts to decrease ℜ0, curbing pandemic propagation. 

 Specifically, higher recovery (𝛾) and isolation (𝜃, 𝜅) rates, together with increased 

vaccination (𝜈), help limit transmission opportunities by shortening infection durations and 

removing infectious sources. 

In summary, the recruitment rate, transmission probability, and incubation onset pace 

promote the pandemic according to this analysis, while faster recovery, more proactive 

isolation, and expanded immunization dampen contagiousness as quantified by their negative 

impacts on ℜ0. 

To further elucidate how influential parameters affect disease progression, simulations 

were conducted examining variations in those parameters demonstrating high sensitivity, 

namely 𝛼, 𝜇, 𝑎𝑛𝑑 𝜈: 

Figure 3 depicts the impact on infected numbers (𝐼) when only 𝛼, the incubation period 

transition rate, is altered while other values remain fixed. Specifically, simulations were run 

with 𝛼 =  0.079, 0.416,𝑎𝑛𝑑 0.985. The results clearly show that higher α values, 

corresponding to faster development of symptoms after exposure, produce significantly fewer 

total infected individuals over time. With 𝛼 =  0.079, 𝐼 reaches 12915 by day 14, compared to 

only 978 for 𝛼 =  0.416 and 42 𝑓𝑜𝑟 𝛼 =  0.985. 

 

Figure 3: The impact of varying the value of 𝛼 on the infected population 
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This corroborates the positive sensitivity of 𝛼, confirming faster symptom onset helps 

curb pandemic expansion by reducing the duration infectious subjects can potentially transmit 

the virus while asymptomatic. Control strategies aimed at shortening incubation periods may 

thus prove beneficial from an epidemiological modelling perspective according to these 

explorations. 

Figure 4 depicts the impact on the number of infected individuals (𝐼) when only the 

natural mortality rate (𝜇) is varied between 0.079, 0.416, and 0.985 while holding other 

parameters constant. 

It can be clearly seen that higher 𝜇 values, corresponding to increased baseline mortality, 

produce markedly fewer total infections over the 14-day period. Specifically: 

 With 𝜇 =  0.079, 𝐼 reaches a peak of 2426 individuals by day 14. 

 For 𝜇 =  0.416, the maximum 𝐼 is reduced to only 9 cases. 

 And with 𝜇 =  0.985, no infected cases emerge, as any new infections are immediately 

offset by the very high background death rate. 

 

Figure 4: The impact of varying the value of 𝜇 on the infected population 

 

Therefore, in accordance with the negative sensitivity of 𝜇 identified earlier, elevating the 

natural removal of individuals from the population through death helps effectively curb 

pandemic spread over time by limiting opportunities for disease transmission. Strategies to 

maintain overall public health standards may complement other interventions from this 

perspective. 
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Figure 5 illustrates the impact on the number of infected individuals (𝐼) when only the 

vaccination rate of susceptible persons (𝜈) is altered between 0.079, 0.416, and 0.985 while 

holding other factors fixed. Notably, increasing 𝜈 yields progressively fewer total infections 

over the 14-day span depicted. Specifically: 

 With 𝜈 =  0.079, the peak 𝐼 reaches 5068 cases. 

 At 𝜈 =  0.416, the maximum I declines substantially to 1801 cases. 

 And for 𝜈 =  0.985, an even sharper reduction occurs, capping 𝐼 at approximately 790 

cases. 

 

Figure 5: The impact of varying the value of 𝑣 on the infected population 

 

Consistent with the protective influence of higher vaccination proposed by the negative 

sensitivity of 𝜈, these simulations confirm expanded immunization programs help suppress 

pandemic growth over time by lowering the availability of susceptible hosts. More robust 

vaccine rollout aligns well with curbing communal spread according to this investigative 

modelling work. 

 

Figure 6: Forward bifurcation driven by ℜ0 
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Figure 6. shows that the system (1) experiences a forward bifurcation at ℜ0 = 1 

corresponding to the infection rate value of  𝛽 ≅ 0.00165. by observing Figure 6. We can 

notice that the disease-free equilibrium which is feasible always loses its stability when ℜ0 >

1 while the endemic equilibrium becomes feasible and stable at the same period of ℜ0 > 1. 

 

Conclusion 

This study developed a SEIQRD compartmental model to simulate the spread of COVID-

19 among six interacting subgroups: susceptible (𝑆), exposed/latent (𝐸), infected/symptomatic 

(𝐼), quarantined (𝑄), recovered/immune (𝑅), and deaths (𝐷).Local stability of the disease-free 

and endemic equilibria was evaluated using the Routh-Hurwitz criteria. This analytical 

approach provided results for the local asymptotic stability at both non-endemic and endemic 

states. Global stability was also investigated via the Lyapunov method. This numerical 

technique similarly yielded conclusions about the global asymptotic stability at the non-

endemic and endemic equilibria. 

By dividing the population into these six subclasses and applying mathematical modelling 

frameworks like Routh-Hurwitz and Lyapunov analyses, the research afforded a more nuanced 

understanding of disease dynamics compared to simpler formulations. The stability 

determinations at equilibrium conditions offer useful prognostic insights into how perturbations 

may influence long-term propagation under different transmission scenarios. The key findings 

from the mathematical modelling and analysis were. Numerical simulations computed a basic 

reproduction number (ℜ0 less than 1. With ℜ0 < 1, the disease-free equilibrium is locally and 

globally asymptotically stable according to the analytical techniques applied. Therefore, in the 

long run the spread of COVID-19 through the population will decrease such that eventually no 

individuals remain infected. Sensitivity analysis identified four parameters with primary 

influence on transmission dynamics. Recruitment rate into the susceptible class Transmission 

probability from susceptible to infected individuals Onset rate from latent to symptomatic phase 
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Natural mortality rate Of these, faster progression to symptoms post-exposure, higher baseline 

removal of individuals from the population, and increased vaccination reduced infected over 

time Conversely, higher recruitment feeding the susceptible reservoir and enhanced 

transmission boosted pandemic progression In conclusion, the modelling elucidated which 

epidemiological factors most significantly drive the reproduction number and should therefore 

guide mitigation response prioritization. 
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